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Abstract. Ontology search is becoming increasingly important as the number of available ontologies on the Web steadily in-
creases. Ontology recommendation is done by analyzing various properties of ontologies, such as syntax, structure and usage, in
order to find and recommend high quality matches for a user defined query. Only a few ontology libraries and search engines facil-
itate this task for a user who is looking for an ontology that models all or some of the concepts she is looking for. In this paper, we
introduceRecoOn, a framework that helps users in finding the best matching ontologies to a multi-keyword query. Our approach
recommends a ranked list of relevant ontologies using metrics that include the matching cost of a user query to an ontology, an
ontology’s informativeness and its popularity. Based on these metrics two versions of RecoOn are implemented: RecoOnln,
where the metrics are combined in a linear model to find the relevance score of an ontology to a query, and RecoOnopt that
formalizes ontology recommendation as an optimization problem to recommend ontologies to the user that are as informative
and popular as possible while incurring the least matching costs. We compare both versions of RecoOn with the state-of-the-art
approach in ontology ranking by conducting a user study over the CBRBench ontology collection. Our experimental results show
that both versions of the proposed approach are promising: they identify high-quality matches for keyword queries over real-life
ontologies, and outperform the state-of-the-art ranking method significantly in terms of effectiveness, while RecoOnopt is more
effective thanRecoOnln. We further test the scalability of our proposed approach; and results showRecoOnopt is more efficient
than RecoOnln.
Keywords: Ontology Search, Ontology Recommendation, Ontology Ranking

1. Introduction

Ontologies are a shared conceptualization of knowledge in a specific domain of discourse. However,
only if an ontology is reused and thus its conceptualization validated by others it becomes truly a shared
conceptualization. The process of reusing existing ontologies is also cost-effective and produces high-
quality conceptualization, because referring to an established ontological term in another domain of dis-
course builds an interlinked model of conceptualizations with strong formal semantics. It also facilitates
data interoperability on both the syntactic and the semantic level. The growth of available ontologies in
vertical domains such as bioinformatics, e-commerce and the internet-of-things highlights an increasing
need of ontology search, which is the process of finding ontologies for users’ defined queries from an
ontology collection. In order to find the relevant ontologies various terms within those ontology, such as
classes and properties, are searched and matched to the queries. However, it is often difficult to find the
right ontology for a given use case. A user may not know the exact classes or properties and their positions
in an ontology (ontological structure) she wants, but requires that the ontology contains a set of resources
as its constituents. To mitigate the problem, a schema-less and structure-less keyword-based query is com-
monly used for ontology search. The problem here is that it is still hard to choose between ontologies
that match to such a keyword query. Further, if there is no exact match for a given query string, a subset
of the query may be used in order to find ontologies of interest. However, considering ontology matches
for all subsets of the query terms results in a large number of matches. Consequently, it is often too time
consuming for a user to explore the matched ontologies to find the most suitable one.
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Some previous work (Alani, Brewster, & Shadbolt, 2006; Noy et al., 2009; Noy & d’Aquin, 2012)
has tackled the problem of finding and recommending ontologies. More recently, a dedicated ontology
search engine has emerged (Vandenbussche & Vatant, 2014). Some of the search engines (e.g. (Ding et
al., 2004)) adopt document-ranking algorithms to introduce ranking to their search results; most consider
the popularity of terms in the ontology corpus. For this they often use the PageRank algorithm as the
ranking factor, which although effective in some cases, as (Butt, Haller, & Xie, 2014a) showed, hinders the
visibility of newly emerging, but well defined ontologies. Moreover, most of the ontology search systems
retrieve ontological terms (concepts and relations) and only a few provide ontology search based on a
keyword query. Only a few ontology libraries and search engines facilitate the task of ontology retrieval
for a user who is looking for an ontology that models all or some of the concepts she is looking for. The
National Center for Biomedical Ontology (NCBO) proposed a biomedical ontology recommender web
service (Jonquet, Musen, & Shah, 2010) that is one of the most prominent approaches to find an ontology
based on the text description. It is also a domain dependent ontology library and does not deal with all
types of ontologies. A general solution is required for ontology search based on text descriptions or at
least a multi-term query string.
RecoOn1 , an Ontology Recommendation approach, is an effort towards a dedicated ontology search

engine that recommends relevant ontologies in response to a multi-term query string. Given a keyword
query Q and a partial match approach, one might find many matches of Q in an ontology corpus. Thus,
a user friendly ontology search engine must address the following two questions: (1) how to determine
which match is better, and (2) how to identify the top k matches? We propose an ontology recommendation
approach that first finds the matched (relevant) ontology set to a query string; and then identifies the up
to k most relevant ones. To identify the k most relevant ontologies for a query string, three measures are
computed for each ontology: matching cost - the syntax and structural difference of the ontology from
the query, informativeness - the information an ontology contains about the concepts that match the query
string, and popularity - the popularity of the ontology in the ontology corpus. We then find the relevance
of an ontology to the query by formulating and solving ontology recommendation as a linear model,
referred to as RecoOnln, and as an optimization problem referred to as RecoOnopt. The aim is to find the
ontologies that are as informative and popular as possible while incurring the least matching costs. The
approach is evaluated on the CBRBench dataset (Butt et al., 2014a) against AKTiveRank by conducting
a user study. The results of our user study show that RecoOnopt and RecoOnln outperforms the baseline
state-of-the-art algorithm AKTiveRank; and RecoOnopt is efficient as well as effective as compared to
RecoOnln on CBRBench ontology collection and sample queries designed in this work.

The remainder of the paper is structured as follows. Sec. 2 discusses related work. Sec. 3 gives some pre-
liminaries and outlines the RecoOn workflow. Sec. 4 describes the ontology recommendation approach.
Sec. 5 reports on the evaluation results and Sec. 6 concludes the paper.

2. Related Work

The Linked open Vocabularies (LOV)2 system contains domain independent ontologies retrieved from
the datasets in the Linked Data Cloud; and facilitates ontology search for a given query term. For term
search, it uses a ranking algorithm based on the term popularity in Linked Open Data (LOD) and in the
LOV ecosystem (Vandenbussche & Vatant, 2014). However, the vocabulary search results are unordered.
WebCORE (Cantador, Fernández, & Castells, 2007) recommends the most appropriate ontologies for a
given domain. The tool allows a user to refine and enlarge query terms using WordNet, and then auto-
matically recommends ontologies based on a query terms’ frequency in the matched ontology and the
knowledge base. WebCORE modifies the vector space model to compute the similarity between the query
vector and ontology vector. Moreover, it considers the manual user evaluations in order to incorporate a

1A demo based on CBRBench ontology collection is available at www.activeraul.org/RecoOn/, and the code is
available at https://github.com/anilabutt/RecoOn

2http://lov.okfn.org
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human, collaborative assessment of ontologies. However, (Butt et al., 2014a) shows that the vector space
model is not an optimal ontology ranking model, and we are not considering manual ontology evaluation
in this work. Swoogle (Ding et al., 2004) is a crawler-based indexing and retrieval system for the Seman-
tic Web. It supports keyword-based search over RDF documents and orders results (i.e, ontologies, prop-
erties, or classes) according to their popularity. It adapts PageRank (Page, Brin, Motwani, & Winograd,
1998) as the method to compute popularity of ontologies or its terms. WATSON (d’Aquin & Motta, 2011)
collects and indexes available semantic content on the Web (both ontologies and entities). It computes
some quality measures (e.g., structural measures, topic relevance,etc.) for ontologies and their terms and
made them available to the user or application to design their own ranking scheme according to the appli-
cation requirement. OntoKhoj (Patel, Supekar, Lee, & Park, 2003), a crawler-based semantic Web portal,
indexes the crawled ontologies in a local repository. A PageRank (Page et al., 1998) based ranking model
is adapted to rank the large number of ontologies within each category. Sindice (Tummarello, Delbru, &
Oren, 2007) is a registry and lookup service for Semantic Web data. In the case of a literal search, re-
sources are ranked according to their text relevancy with the search terms. For a resource search, search
results with common host-names to the search resource are ranked higher than the other results. These
ranking techniques were already deemed as error-prone in conventional Web search engines.

Several other ranking techniques are proposed in the literature and tested on an ontology collection, but
are not available online. One such technique, AKTiveRank (Alani et al., 2006) is used in our evaluation
as the baseline. The approach uses keyword/s to find the relevant set of ontologies from a semantic Web
search engine (i.e. Swoogle (Ding et al., 2004)) and then applies four ranking models (Freeman, 1977;
Rada, Mili, Bicknell, & Blettner, 1989; Spanoudakis & Constantopoulos, 1993) that were originally pro-
posed for graph retrieval or document retrieval, to the task of ranking ontologies. The final rank of an
ontology is calculated using fixed weights for each of the four measures. For each query, the weights of all
four measures are required to be computed individually to get the maximum performance. However, that
is practically impossible to do without applying some other techniques. (Alani, Noy, Shah, Shadbolt, &
Musen, 2007) presents a context-based ontology search approach which finds the most relevant terms, in
a given domain, using Wikipedia and outputs results based on the coverage of these terms in an ontology.
The approach addresses the problem of ontology search, but not ontology ranking, and thus considers all
returned ontologies equally relevant for a query. OntoQA (Tartir & Arpinar, 2007) evaluates ontologies
related to a certain set of terms and rank them according to a set of metrics. The evaluation of an ontol-
ogy is made on two dimensions: Schema and Instances. The final relevance score of a candidate ontology
is the weighted average of the schema and instance metrics; weights are set based on empirical testing.
However, most ontologies in the wild do not have instances which would result in a lower relevance score
for those ontologies. (Sabou, Lopez, & Motta, 2006) presents an approach that considers a query text,
retrieves triples out of the query text, expands query terms by considering their synonyms and hyponyms,
identifies the matching ontologies and ranks them for the given query text. The ranking model relies on
the generality deviation of a matching ontology from the query triples. The ranking quality heavily de-
pends upon the query expansion and triple extraction processes. CARRank (Wu, Li, Feng, & Wang, 2008)
proposed to rank ontology terms (i.e. class and properties), but not ontologies themselves. The approach
finds the important classes and properties within an ontology.

There are some ontology recommendation approaches that are specifically designed for biomedical on-
tologies. For instance, BiOSS (Martínez-Romero, Vázquez-Naya, Pereira, & Pazos, 2014), a system for
the selection of biomedical ontologies, outputs single or combined matching ontologies for a user speci-
fied keywords. BiOSS proposes three evaluation metrics to rank matching ontologies: ‘domain coverage’,
‘semantic richness’, and ‘popularity’. The output matching ontologies are ordered according to the ag-
gregated scores combined from these metrics. Similarly, The National Center for Biomedical Ontology
(NCBO) proposed a biomedical ontology recommender web service (Jonquet et al., 2010) to suggest the
most appropriate ontologies required to annotate a given biomedical text data. The recommender service
recognizes relevant concepts from an ontology repository to annotate the given text data, and then expands
the first set of annotations using the UMLS meta-thesaurus and the NCBO ontologies. The relevance of
an ontology is computed based on the context and matching terms in that ontology; that mainly depends
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on the accuracy of the NCBO annotator. The methods proposed by such techniques use some common
schema or meta-data to evaluate the ontologies. For example, the former uses the UMLS meta-thesaurus,
PubMed and BioPortal to compute semantic richness and popularity, and the latter uses UMLS meta-
thesaurus and NCBO ontology. However, our approach works without the use of a common schema or
meta-data.

In RecoOn, three evaluation metrics are considered i.e., Informativeness, Popularity and
Coverage (referred to as ‘matching cost’); and these three metrics are then combined using an optimiza-
tion problem to compute a final relevance score for each ontology to a user query. Each of these three
metrics have only been considered individually as a ranking metric previously.

Informativeness is considered by entity ranking approaches (Cheng, Tran, & Qu, 2011; Meymandpour
& Davis, 2013). They adopt Shannon entropy as an informative measure; according to which the least
frequent property or concept with fewer instances is more informative. RecoOn considers connectivity of
a concept as the measure of informativeness as discussed in Sec. 4.2.2. The relation frequency is taken
into consideration for this purpose. AKTiveRank (Alani et al., 2006) has considered relation frequency as
a density measure where four different types of relationships of a concept are identified and each type is
assigned a fixed weight. The final density measure for an ontology is an average density of all its matching
concepts. However, in contrast to RecoOn the informativeness is not query-dependent.

Popularity is mostly calculated using PageRank (Patel et al., 2003; Ding et al., 2004), with the difference
to RecoOn being mostly around what type of relationships are used for the calculation of the PageRank
score. OntoKhoj (Patel et al., 2003) assigns fixed weights to three different types of links (owl:imports,
rdfs:subClassOf and rdfs:domain/rdfs:range) from one ontology to another ontology and considers the
edge (i.e. link) weights in the PageRank execution. Swoogle (Ding et al., 2004) identifies five different
types of link categories and assigns different weights to each category to model their probability of being
explored. In RecoOn we consider all types of links from one ontology to another as a positive vote for the
referred ontology.

Coverage is mostly measured in terms of presence of query keywords in an ontology. Some approaches
prefer exact matches (Vandenbussche & Vatant, 2014; d’Aquin & Motta, 2011) and others partial matches
(Butt, Haller, & Xie, 2016; Sabou et al., 2006; Cantador et al., 2007). Such techniques either enhance
query terms using a thesaurus (e.g. Wordnet) by considering synonyms and antonyms (Sabou et al., 2006;
Cantador et al., 2007) or assign a fixed weight to each partial match e.g., (Alani et al., 2006) considers
a 0.5 weight for each partially matched concept. RecoOn, considers Jaccard distance as a label matching
cost. It also considers a structural matching cost to prefer the ontologies that contain matched concepts in
close vicinity.

Also, we consider a combination of the aforementioned three metrics for ontology evaluation in a novel
way. Most of the existing approaches use either one of the three measures or assign fixed weights to
combine more than one evaluation metrics. (Butt et al., 2014a) shows that none of the commonly used
evaluation metrics performs adequately. Moreover, for optimal performance of an algorithm, the metrics’
weights need to be reset for each user query (Alani et al., 2006), which is not a practical solution.

3. RecoOn: Ontology Recommendation

In the following we first define the terms used throughout the paper, and then give a brief overview of
the ontology recommendation workflow.

3.1. Preliminaries

Fig. 1 and Fig. 3 introduce a motivating example ontology and query that are used throughout this paper.
An ontology here refers to a labelled directed graph based formalisation o = (C, R, L) of a do-

main knowledge. C(o) is a finite set of nodes where c ∈ C(o) denotes a domain concept in ‘o’ e.g.,
‘Publication’ or ‘Conference’. R(o) is the set of edges where r(ci, cj) ∈ R(o) denotes a re-
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lationship between ci and cj e.g., authorOf(Publication,Person). L is a labelling function
which assigns a label L(c) (resp. L(r) or L(o)) to node c (resp. an edge r ∈ R(o), or the ontology ‘o’).
In practice, the labelling function L may specify (1) the node labels to relate the node to the referred
concept, e.g. ‘Person’, ‘Publication’ and ‘Author’; and (2) the edge labels as explicit rela-
tionships between/of concepts e.g., ‘publicationOf’, and ‘title’ or implicit relationships e.g.,
‘subClassOf’ and ‘superClassOf’, and (3) the ontology label to relate the ontology to the do-
main or some identity.

Function Output
lPerson Person@en
lauthorOf authorOf@en
domain(authorOf) Person
range(authorOf) Publication
super(Author) Person
sub(Publication) ConferencePaper,

JournalPaper

Table 1: Functions with outputs

xsd:string

Owl:Thing

Publication Person

JournalPaper AuthorConferencePaper

xsd:year

xsd:stringxsd:intxsd:stringxsd:int
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pages
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publicationOf

Fig. 1.: An Example Ontology
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Fig. 2.: Match Patterns for ’Q’

Q = author , paper , 
conference

author

paper

conference

QG

Fig. 3.: Query ‘Q’ and Query Graph ‘QG’

Based on the description above we define the following functions:

– lc : C → L(C) returns the label of concept ‘c’
– lr : R→ L(R) returns the label of relation ‘r’
– domain(r) : R→ C returns the source concept/s of relation ‘r’
– range(r): R→ C returns the target concept/s of relation ‘r’
– super(c): C → C returns the immediate super concept/s of concept ‘c’
– sub(c): C → C returns the immediate sub concept/s of concept ‘c’

Table 1 presents the results of the execution of these functions on the example ontology shown in Fig. 1.
Moreover, we define some terms on graph ‘g’, applicable to all graph based formalizations (e.g., ontology
and query graph) used throughout this paper, while Table 2 summarizes the notations used for these terms.

Definition 1 : Concept Subsumption ( ⊂C ) . A concept set C1(g) is subset of another set C2(g) if every
node (i.e., concept) in C1(g) is in C2(g). C1(g) may have exactly the same nodes (i.e., concepts) as C1(g).

C1(g) ⊂C C2(g) iff ∀ c, c ∈ C1(g) → c ∈ C2(g).
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Table 2
Notations used throughout the paper

Variable Description

o An ontology in Ontology Collection ‘O’
opi Ontology pattern in oi : C(opi) ⊂C C(oi) and R(opi) ⊂R R(oi)

Q Query String
qi Single query term in Q (i.e. qi ∈ Q)
QG Query Graph w.r.t. Q
cq A query concept in Query Graph: cq ∈ C(QG)

Qmat Match of QG in o
φ(cq) c ∈ C(Qmat) : c ≈ cq
CQmat Concept Match Set: CQmat = {φi(cq) : φi(cq) ∈ C(Qmat) and cq ∈ C(QG)}

In Fig. 1, if C1(o) is the set of all concepts in the ontology i.e. C1(o) = {Author, Person, Publication,
JournalPaper, ConferencePaper} and C2(o) is the set of some concepts, i.e. C2(o) = {Author,
Publication } then C2(o) ⊂C C1(o).

Definition 2 : Relation Subsumption ( ⊂R ) . A relation set R1(g) is subset of another set R2(g) if every
edge (i.e., relation) in R1(g) is in R2(g). R1(g) may have exactly the same edges (i.e., relations) as R1(g).

R1(g) ⊂R R2(g) iff ∀ r, r ∈ R1(g) → r ∈ R2(g).

Considering Fig. 1, ifR1(o) is the set of some relations or edges in the ontology e.g.,R1(o) = {authorOf ,
publicationOf , title, journal, bookT itle} and R2(o) is the set of object relations only i.e. R2(o) =
{authorOf , publicationOf} then R2(o) ⊂R R1(o).

Definition 3 : Ontology Pattern ( op ). An ontology pattern op in an ontology ‘o’ is a directed labelled
graph, comprising of nodes and edges (i.e. concepts and relations), where

C(op) ⊂C C(o) and R(op) ⊂R R(o) and ∀ r(ci, cj), r(ci, cj) ∈ R(op)→ r(ci, cj) ∈ R(o).

The example ontology in Fig. 1 comprises of a set of concepts C(o) = {Author, ConferencePaper,
JournalPaper, Person, Publication } and a set of relations R(o) = { authorOf , bookT itle,
journal, number, page, publicationOf , subClassOf , title, volume, year }. The part of ontol-
ogy marked as red in Fig. 1 (referred to as ored) is composed of a set of concepts C(ored) =
{Author, ConferencePaper, Person, Publication} and a set of relations R(ored) = { authorOf ,
publicationOf , subClassOf }. Since C(ored) ⊂C C(o) , R(ored) ⊂R R(o)C and for all re-
lations r ∈ R(op) (i.e. authorOf(Person, Publication), publicationOf(Publication, Person),
subClassOf(Author, Person), subClassOf(ConferencePaper, Publication) ) r ∈ R(o), accord-
ing to the definition 3, ored is an op in o.

Definition 4 : Query Graph (QG ) . Given a query stringQ= {q1, q2, ..., qn} containing ‘n’ query terms, a
query graph ‘QG’ w.r.t. Q is defined as an unlabelled undirected graph where each query term is mapped
to a node, and each node has one or more unlabelled and undirected edges that connect this node to every
other node in the graph. C(QG) is a set of nodes or concepts where cq ∈ C(QG) denotes a concept (query
term) in ‘QG’. R(QG) is the set of edges where (ci, cj) ∈ R(QG) denotes a relationship between ci and cj .

An example three-term query string Q = ‘author conference paper’, and a possible query graph ‘QG’ for
‘Q’ is shown in Fig. 3, where each query term q ∈ Q is mapped to a query graph concept cq and nodes are
connected to each other.
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Definition 5 : Query Match (Qmat ) . A query matchQj
mat in an ontology ‘oj’ is a set of ontology patterns

‘op’ in ’o’ such that for a Ci(QG) that is a subset of C(QG), Ci(QG) is also a subset of C(op).

Qmat = { op : Ci(QG) ⊂C C(op) and Ci(QG) ⊂C C(QG) }

According to the definition, a query match is a partial match for a query graph. Consider an example
query Q = ‘author paper conference’, a query graphQG for this query consists of three nodes and therefore
C(QG)= {Author, Paper, Conference} as shown in Fig. 3. Fig. 2 shows example ontology patterns
op1, op2 and op3 in ontologies o1, o2 and o3, respectively. Since, a subset of C(QG) is a subset of each of
C(op1), C(op2) and C(op3) therefore op1, op2 and op3 are query matches in o1, o2 and o3 for QG.

Due to the adaptation of a partial match approach in RecoOn, a query match Qmat may introduce some
additional concepts or relations, or drop a few existing concepts and relations compared to the concepts
and relations contained in the query graph QG itself as shown in matches ‘op1’, ‘op2’ and ‘op3’ of Fig. 2.
The newly introduced concepts in Qmat may or may not match a query node. For instance, the ontology
pattern op2 of Fig. 2, introduces two new concepts ‘Person’ and ‘Publication’ that do not exist in the query
graph. Similarly ‘op3’ lacks the query concept ‘conference’.

Definition 6 : Concept Match Set (CQmat ) . If a concept c ∈ C(Qmat) i.e. concept set of query match in
‘o’, is a match for at least one of the query nodes cq ∈ C(QG) (i.e. c ∈ C(Qmat) ≈ cq ∈ C(QG)), then
the concept c is called a match concept φ(cq) of cq. The set of all matched nodes of a query graph match
is the concept match set CQmat of the query graph match i.e.,

CQmat = {c : c ∈ C(Qmat) ∧ c = φi(cq) ∧ cq ∈ C(QG)}

For instance, for a query ‘q’ and query graph ‘QG’, as shown in Fig. 3, a query match Qmat is ‘op2’ (i.e.
ontology pattern in ‘o2’) as shown in Fig. 2, the match for a query concept ‘author’, ‘paper’ and ‘confer-
ence’ is φ(author) = ‘Author’, φ(paper) = ‘ConferencePaper’, and φ(conference) = ‘ConferencePaper’
respectively. Therefore, the concept match set CQmat for Qmat is {‘Author’, ‘ConferencePaper’}.

3.2. RecoOn Workflow

RecoOn is implemented as a Java web application that uses Virtuoso as an ontology repository. Fig. 4
shows the overall execution flow of RecoOn. Starting from the input, there are four components that par-
ticipate in the ontology recommendation task. Here, a step-by-step explanation of how different RecoOn
components participate in the recommendation task is given.

Query preprocessing. This component takes a query string as an input and extracts keywords from the
string by stemming and removing stop words. A query graph is generated from the extracted key-
words, where each keyword is matched to a node and each node is connected to each other node in
a query graph. If a keyword appears several times in the query string, only one corresponding node
is created for that keyword in the query graph. A query graph considers each keyword as a single
word, however we look for them as compound words in their matches in the ontologies (cf. Sec.
4.2.1). The query graph is then used to find the appropriate ontology matches for the query.

Ontology Retrieval. This component considers a query graph and finds candidate ontologies for the query
graph as discussed in Sec. 4.1. RecoOn dynamically maps a query graph to a SPARQL query and
retrieves the query matches. RecoOn is implemented and tested for the English language only,
therefore the SPARQL query is defined to lookup English labels of concepts only (i.e. labels that
are defined with an @en tag). The output of this component is the ontology match set, that is passed
on to the next component for the ontology evaluation.
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Fig. 4. RecoOn Workflow

Ontology Evaluation. This component preprocesses query matches before evaluating the ontology match
set. The labels from each query match are considered and for each label the language tag (i.e. ,
‘@en’) is removed. A labelSplit() function is used to split the label based on capital letters to re-
trieve all words from the label, and each word obtained from the label is then stemmed. For instance,
‘ConferencePapers@en’ results, after removing the language tag, splitting the label and stem-
ming in ‘Conference Paper’. After this preprocessing the matching cost (cf. Sec. 4.2.1), infor-
mativeness (cf. Sec. 4.2.2), and popularity (cf. Sec. 4.2.3) for each ontology in the ontology match
set are computed. Finally the relevance score for each ontology to the user query is determined as
shown in Sec. 4.2.4.

Ontology Ranking. This component orders the matching ontologies in order of their relevance score to
the user query and outputs a ranked list of matched ontologies and their concepts.

4. Ontology Recommendation

Based on the functions and definitions above, we now explain our ontology recommendation model.
Given a query string Q and an ontology collection O, the purpose is to find OMAT - a set of matching
ontologies to the query string Q in O, and recommend up to k ontologies to the user to help her finding
the right ontology. To achieve that, the ontologies that are relevant to the query are first retrieved and then
k ontologies are selected based on their matching cost, informativeness and popularity to the query string.

4.1. Ontology Retrieval

Given an ontology collection O and a query string Q, to characterise the match of an ontology ‘o’ to Q,
we define the candidacy of ‘o’ w.r.t. Q as
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cand(o,Q) =

{
true if ∃ Qmat in ‘o’
false otherwise (1)

which is either ‘true’ (a candidate ontology) or ‘false’ (not a candidate ontology). As mentioned in Eq.
1, an ontology ‘o’ is a candidate ontology for a query Q, if it contains at least one match Qmat.
Example: For instance, Fig. 3 shows a query graph for a three keyword query string i.e., ‘paper

author conference’. The example ontology shown in Fig. 1 contains a query matchQmat ( ontology pattern
marked as red in the figure) for Q, therefore the example ontology is a candidate ontology for Q.

A set of all match ontologies in an ontology corpus O for a query Q is referred to as the ontology match
set (OMAT ). i.e.,

OMAT = {oi : cand(oi, Q) ≡ true} (2)

4.2. Recommending k Ontologies

Among all the ontologies in the ontology match sets OMAT for a query Q, we aim to recommend up to
k ontologies that are informative and popular while incurring the least matching costs. In the following,
firstly we define the matching cost of an ontology to the query, the informativeness and the popularity of
the ontology. Then we integrate these measures to get the final score for the ontologies.

4.2.1. Matching Cost
We consider the matching cost for each ontology oi ∈ OMAT to find the k best matching ontologies out

of the ontology match set. The matching cost for oi is the difference between the content and structure of
the concepts in the query match Qi

mat and the corresponding query graph QG. To quantify the matching
cost of an ontology oi, the matching cost for a query matchQi

mat is computed. The matching cost considers
both, the structure and the content of a query match, referred to as the structure matching cost and the
label matching cost, respectively.

Label matching cost. The label matching cost for a query match Qmat is the average difference be-
tween the label of the matched concept c ∈ CQmat and its corresponding query concept cq ∈ C(QG),
where c is a match of cq i.e. c = φ(cq), as shown in Eq. 3 .

costlb(Qmat) =
1

|CQmat |
∑

∀cq∈C(QG)

∑
∀c∈CQmat

distlb(c, cq) : c = φ(cq)

distlb(c, cq) =
|lc ∪ lcq | − |lc ∩ lcq |

|lc ∪ lcq |
(3)

where, distlb(c, q) is the difference in the labels’ contents of c (i.e. lc) and the query term cq (i.e. lcq ), and
|CQmat | is the size of the concept match set. distlb(c, cq) is measured according to information retrieval
principles and is computed by using the Jaccard distance metric. Jaccard distance is a commonly used
measure of distance between two sets; we compute the Jaccard distance of the set of words. Here, lc and
lcq represent a set of words in the label of c and cq respectively. lc ∪ lcq is the set of all distinct words in
labels of c and cq, and lc ∩ lcq are the common words in lc and lcq .
Example: For a match ’op2’ in Fig. 2, the distlb(ConferencePaper, paper) is computed as:

distlb(ConferencePaper, paper) =
|{conference, paper} ∪ {paper}| − |{conference, paper} ∩ {paper}|

|{conference, paper} ∪ {paper}|

=
2− 1

2
= 0.5
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Note that distlb(c, cq) is maximum (i.e. 1) if there is no match for a keyword in this query match. The
label matching cost is low for the query matches that contain all or more common words with the query
concept labels. For example, in Fig. 2, ‘op2’ is favoured over match ‘op3’ as a query match for QG, since
‘op2’ contains more common words with concepts of QG than ‘op3’.

Structural matching cost. A structure matching cost measures the difference in the connectivity struc-
ture of the matched concepts of a query match Qmat. The purpose of this metric is to prefer the ontologies
that contains Qmat where the concepts of concern are in close vicinity. The intuition behind this is, that
the more the concepts are connected to each other, the more closely they are defined in the domain of
discourse. An ideal match Qmat is the one that is at least as connected as the least connected query graph
QG, i.e. all the concepts in the match Qmat should have a direct connection to at least one other query
match in Qmat. We compute the structural cost as:

costst(Qmat) =
1

n

n−1∑
i=1

n∑
j=i+1

distst(ci, cj) : ci = φ(cqi)&cj = φ(cqj )

distst(ci, cj) =


0 if ci = cj
|RSP (ci → cj)| if ci 6= cj
+∞ if 6 ∃ci∨ 6 ∃cj

n= |C(QG)| (4)

In Eq. 4, distst(ci, cj) is the minimum structural distance of any of the match for cqi and cqj i.e., concept
ci to cj in Qmat. The structural distance distst(ci, cj) is 0 if ci = cj (i.e., two query terms matches to the
same concept in an ontology are considered as a compound word in that ontology) or the shortest distance,
in terms of number of edges, of concept ci to cj in Qmat. The length of the shortest path between ci and
cj is positive infinity (+∞) if ci and cj are disconnected (i.e., either one or both φ(cqi) or φ(cqj ) does not
exist in Qmat. The structure cost of a query match costst(Qmat) is the average distance among all the
concepts of the concept match set CQmat of Qmat.
Example: Let us consider two query concepts ‘author’ as cqi and ‘paper’ as cqj of QG, shown in

Fig. 3. The structural distances of the matches (φ(cqi) and φ(cqj )) in op1, op2, and op3, shown in Fig. 2,
is as follows:

– In op1, φ(author) is ‘Author’ and φ(paper) is ‘Paper’, and distst(Author, Paper) is 2.
– In op2, φ(author) is ‘Author’ and φ(paper) is ‘ConferencePaper’, and distst(Author, ConferencePaper)

is 3.
– In op3, φ(author) is ‘Author’ and φ(paper) is ‘Paper’, and distst(Author, Paper) is 1.

To combine the structural cost and the label costs of the query fold match, we take the harmonic mean
of costlb(Qmat) and costst(Qmat) of Qmat, as shown in Eq. 5.

cost(Qmat) =
2.costlb(Qmat).costst(Qmat)

costlb(Qmat) + costst(Qmat)
(5)

The cost of an ontology o for Q is the cost of Qmat in o as shown in Eq. 6.

cost(o,Q) = cost(Qmat) : Qmat ∈ o (6)

4.2.2. Informativeness
Informativeness is defined as a measure of knowledge an ontology provides in relation to a user query.

The informativeness measure is characterized by a feature that an ontology ‘o’ is more informative for a
query Q, if a query match Qmat exists in ‘o’, and the concepts in CQmat have more relations with other
concepts of that ontology or they have datatype relations defined for them. The intuition behind this is, the
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more relations that are defined for a concept, the more important the concept is in the ontology, and the
more information it includes. Therefore, an ontology in which the concepts defined in the ontology have
no or very few relations with other concepts in the ontology are considered less informative for a query.

Our algorithm prefers to recommend more informative ontologies, i.e. ontologies that have stronger
connections between its concepts/datavalues. More precisely, the informativeness of an ontology ‘o’ is a
measure in terms of the informativeness of the query match Qmat it contains. To quantify the informative-
ness of a query match Qmat, we measure the informativeness of each concept in CQmat .

The informativeness of a concept of CQmat is quantified by measuring the connectivity of the concept
in its ontology. The informativeness of each concept c ∈ CQmat is the informativeness of the event that ‘c’
is indeed observed as a concept involving relations in an ontology.

inf(c, CQmat) = 1 + log
rf(c, o)

max{rf(cj , oj) : cj ∈ CQj
mat

⋂
c ∧ cj = φ(cq) : cq ∈ QG}

rf(c, o) = |{r ∈ R(o) : domain(r) ∨ range(r) = c or super(c)}| (7)

Inf(c, CQmat) of a concept is a query dependent metric as shown in Eq. 7. The informativeness of c of
a query match CQmat is equal to the log of rf(c, o), the relation frequency of the concept in the ontology
it belongs to, divided by the maximum rf(cj , oj) of the concept cj in its home ontology oj , where cj
belongs to a query match Qmat for the query Q in oj , and c and cj are concept matches for the same query
node cq ∈ QG in Qmat in and Qj

mat, respectively.
Example: Let us suppose that op1, op2, and op3 (resp. o1, o2, and o3) are the only query matches

(resp. matched ontologies) for the example QG in an ontology corpus. For Qmat = op3, Cop3 = {Author,
Paper}, and

inf(Author, Cop3) = 1 + log
rf(Author, o3)

rf(Author, o1)
= 1 + log

1

2
= 0.7

inf(Paper, Cop3) = 1 + log
rf(Paper, o3)

rf(ConferencePaper, o2)
= 1 + log

1

2
= 0.7

Based on the informativeness of the concepts of a query match, we compute the informativeness of the
query match Qmat as shown in Eq. 8.

inf(Qmat, o) =
1

|C(QG)|
∑

∀c:c∈CQmat

inf(c, CQmat) (8)

Example: For the example query match op3,

inf(op3, o) =
1

|{Author, Paper, Conference}|
(inf(Author, Cop3) + inf(Paper, Cop3)

=
1

3
(0.7 + 0.7) = 0.47

The informativeness of an ontology is then measured as the informativeness of a query match it contains
for a query Q as shown in Fig. 6.

Inf(o,Q) = inf(Qmat, o) (9)
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4.2.3. Popularity
The popularity of an ontology is measured based on the level of reuse of the ontology in an ontology

corpus or based on the size of RDF data populated according to the ontology. In this paper, the popularity
of an ontology is measured in terms of its reuse within the ontology corpus. Therefore, we define pop(o,O),
to measure the popularity of an ontology o in ontology corpus O. Our popularity function is characterised
by the following two features: (i) reuse: an ontology is more popular, if there are more ontologies using the
ontology. (ii) neighbourhood: an ontology is more popular, if other popular ontologies use the ontology.
Based on these two features, a reuse of ontology o by ontology oi is considered as a “positive vote”
for the popularity of ontology o from oi. The PageRank algorithm is adopted as the popularity function,
whereby each ontology is considered a node. Eq. 10, formalises the popularity function which computes
the popularity of o at the kth iteration.

popk(o,O) =
1− α
|O|

+ α
∑

oi∈BO(o)

popk−1(oi, O)

|FO(oi)|
(10)

In Eq. 10, |O| is the total number of ontologies in the ontology corpus, BO(o) is a set of ontologies
reusing the ontology o and FO(o) is a set of ontologies, ontology ’o’ is reusing. We further normalized
the popularity of an ontology within the matched ontology set for query i.e., OMAT .

pop(o,Q) =
pop(o,O)

max{pop(oj , O) : oj ∈ OMAT }
(11)

In Eq. 11, pop(o,Q) returns a value from [0-1]. It is the relative popularity of an ontology ’o’ in OMAT

that is achieved by dividing the popularity of o with the maximum popularity for any ontology among the
matched ontologies for query Q.

4.2.4. Relevance Score
Finally, we define the relevance score of an ontology ‘o’ to the query Q, as a function of the matching

cost, the informativeness and the popularity of ‘o’ for Q.

Linear Model: We describe a linear model containing fixed weights as a quantitative metric to measure
the overall relevance between the query Q and the ontology ‘o’, and choose the up to k ontologies that
have high relevance to the query.

rel(o,Q) = α [inf(o,Q)] + β [pop(o,Q)] + γ [
1

cost(o,Q)
] (12)

According to Eq. 12, ontologies with high informativeness and popularity, and low matching costs are
preferred among all matching ontologies OMAT . Here, α, β and γ are the variable sets to combine the
three features of a linear model.

Optimization Problem: In OMAT , the set of ontologies matched to Q in O, we aim to find up to k
ontologies that are as informative and popular as possible while having the least matching costs (i.e.
the best matches to the query). It can be formulated as an optimization problem, in particular, as a 2-
dimensional 0-1 knapsack problem, where each oi ∈OMAT corresponds to an ‘item’ to be selected whose
‘value’ vi is the informativeness and popularity, and ‘weight’wi is 1, when the ‘capacity’ of the ‘knapsack’
w.r.t the number of items is k and w.r.t. the matching cost is γ .

maximize
∑

∀i:oi∈OMAT

xi ∗ [α(inf(o,Q)) + β(pop(o,Q))]

subject to
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∑
∀i:oi∈OMAT

xi ≤ k

minimize
∑

∀i:oi∈OMAT

xi ∗ cost(oi, Q)

xi ∈ [0, 1], 1 < i < |OMAT | (13)

In Eq. 13, the optimization algorithm maximizes the informativeness and popularity of the ontology in
the result set, where α and β are the variable sets to combine the two, considering the constraint of the
result set size, i.e. k and its matching costs.

We implemented the 2-dimensional knapsack problem as a less optimum greedy algorithm solution.
We traded speed for effectiveness, since it is important in real time query execution and as shown in the
evaluation, it is still very accurate and easily outperforming existing state of the art. An optimal solution
using dynamic programming takes a lot of time but results in an optimal solution, whereas a less optimum
greedy solution is efficient but the results are not optimal. The greedy algorithm first sorts the ontologies in
increasing order of their matching cost and then selects the one with high popularity and informativeness.
If two of the ontologies have the same matching cost, it prefers the one that is first evaluated for its
popularity and informativeness.

5. Evaluation

In this section we report on a set of experiments and a user study that we performed to demonstrate the
effectiveness and efficiency of RecoOn.

5.1. Experimental Setup

For our experiments we use our previously established CBRBench3. It contains an ontology collection
of a representative set of ontologies used on the Web, benchmark queries, and a gold standard established
by human experts on the task of ranking ontology concepts for the benchmark queries. All the experiments
are performed on a machine with Intel Core i7 3.4 GHz Octa-core CPU and 8GB RAM.

5.1.1. DataSet
For our ontology corpus we use CBRBench ontology collection. This ontology collection is composed

of 1011 OWL & RDF(S) ontologies that we use as our ontology corpus. We stored each ontology as a
named graph in a Virtuoso database.

5.1.2. Query selection
CBRBench contains ten single-term queries and a gold standard composed of a relevance score for

matching concepts to the queries on the task of ontology concept retrieval. CBRBench queries are selected
using the query log4 of the Linked Open Vocabularies (LOV) search engine (Vandenbussche & Vatant,
2014). The most popular search terms in the log covering the period between 06/01/2012 and 16/04/2014
are selected as benchmark queries. These general queries cover a wide range of domains from the list of
the most popular query terms in the LOV query log. This helped evaluators who were experts in different
domains to correctly evaluate the concepts. All CBRBench queries are single word queries – that is for
two reasons. First, only about 11% of all queries posed on the LOV search engine use compound search
queries and no compound query was among the 200 most used queries and second, for no compound query
in the top 1000 query terms did the benchmark collection contain enough relevant resources to derive at

3See https://zenodo.org/record/11121
4See http://lov.okfn.org/dataset/lov/stats/searchLog.csv
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Table 3
Query strings derived from benchmark query terms

Q-Id Multi term queries Q-Id Multi term queries
Q1 person & agent Q20 name & person
Q2 person & organization Q21 name & title
Q3 person & organization & project Q22 name & person & agent
Q4 person & student & professor & university
Q5 organization & location Q23 title & identifier
Q6 organization & student Q24 title & organization
Q7 organization & student & course Q25 title & author & document
Q8 organization & student & course & university
Q9 event & location Q26 location & place
Q10 event & conference Q27 location & place & geographic
Q11 event & conference & paper
Q12 event & conference & paper & article
Q13 author & publication Q28 music & event
Q14 author & newspaper Q29 music & group
Q15 author & publication & research
Q16 author & publication & research & issue
Q17 address & organization Q30 time & date
Q18 address & organization & place
Q19 address & organization & place & country

a meaningful ranking. However, varying length queries composed of multi-terms are required to evaluate
the effectiveness of RecoOn that are not available in CBRBench. Thus, we first need to establish a set of
queries to be used in our experiment as well as in future research. Our queries are derived from our earlier
established CBRBench queries and ontology collection in two ways:

Single-term queries. Single-term queries proposed in the CBRBench are used as is to evaluate the per-
formance of the ranking algorithms on ontology ranking. For each single-term benchmark query, the rel-
evance score of the matched concepts to the query terms in the gold standard is considered as the rel-
evance of the corresponding ontologies to the query term. The ten single keyword queries used for the
evaluation of RecoOn are: ‘address’, ‘author’, ‘event’, ‘location’, ‘music’, ‘name’,
‘organization’, ‘person’, ‘time’ and ‘title’.

Multi-term queries. Multi-term queries are created to evaluate the effect of the query size on the perfor-
mance of the algorithm as follows.

1. First, for each of the ten query terms of CBRBench the top three matching ontologies are considered.
This results in a collection of 28 ontologies (some ontologies appear in the top three for more than
one query) while for two queries we considered 4 ontologies because there was a tie for the third
ranked ontology.

2. Each concept in these ontologies is assigned a single-term label by finding the intended type of class
using the method proposed by (Butt, Haller, & Xie, 2014b), e.g., the label “An Organization - a base
class for instances of organizations” for a class5 is reduced to ‘organization’.

3. Once each concept has a single-term label, all possible combinations of length 2, 3 and 4 terms are
generated for each ontology from the labels of the concepts of the ontology. E.g., a string ‘person &
university & student’ is generated by combining the labels of the ‘person’, ‘university’ and ‘student’
classes for the query term ‘person’ from one of its matched ontologies i.e., UNIV_BENCH
ontology6.

5http://data.press.net/ontology/stuff/Organization
6http://swat.cse.lehigh.edu/onto/univ-bench.owl\#



Anila et al. / RecoOn: Ontology Recommendation for Structureless Queries 315

4. For each combination of concept labels the number of times they occur collectively in the ontology
corpus is computed. The most frequently occurring 2, 3 and 4 length concept label combinations
are then selected from each ontology. The intuition behind this process is that the more frequently
concepts occur together in the ontology corpus, the more related they are (they belong to the same
domain of discourse). We could not find a meaningful combination for some multi-term queries
because they do not occur together in any other ontology and ended up with 30 additional multi-term
queries to evaluate RecoOn as shown in Table 3.

5.1.3. Baseline
To evaluate the quality of results produced by RecoOn, two versions of RecoOn are implemented.

– RecoOnopt - Optimized RecoOn , RecoOn recommends up to ‘k’ results based on the relevance score
computed through the optimization model.

– RecoOnln - Linear RecoOn , RecoOn recommend up to ‘k’ results based on relevance score com-
puted with linear relevance model. The weights for calculating relevance score (Eq. 12) for our ex-
periments are set to 0.4, 0.3, and 0.3 for the ‘matching cost’, ‘informativeness’ and ‘popularity’ met-
rics respectively. The relative weighs for these metrics are selected based on how well each metrics
performed in our pre-evaluation tests.

To evaluate the effectiveness, we compare the result set of RecoOnopt with the result sets of
AKTiveRank and RecoOnln for all queries shown in Table 3 .

To the best of our knowledge, LOV is the most recent purpose built ontology library available on the
Web. However, LOV and most of other ontology libraries do not focus on the ranking of search results
(Butt, Haller, & Xie, 2015). Moreover, some domain specific ontology libraries and search engines (Noy
et al., 2009; Martínez-Romero et al., 2014) purposed effective ranking models, however, the ranking meth-
ods used are specific to that domain and cannot be adapted for a domain independent ontology collection.
We consider AKTiveRank as our baseline, since the approach is one of the two state-of-the-art generic
ontology ranking techniques (the second one is Swoogle (Ding et al., 2005)). However, as the evaluation
results presented in (Alani et al., 2006) prove, AKTiveRank outperforms Swoogle on the task of ontol-
ogy ranking. Another reason for not considering Swoogle as a baseline is that it computes the ranks for
the matched ontologies on the basis of the instances of that ontology in the Swoogle database, which is not
possible in our case where the dataset is merely composed of ontologies. A list of RecoOnopt containing
‘k’ elements is compared with RecoOnln to verify that the quality of the results produced through the
optimization model is better than a linear model.

5.2. User Study

5.2.1. Approach.

Table 4
Comparison statistics of RecoOnopt with baselines

Baseline Minimum Maximum Average SDev
AKTiveRank 3 12 8 1.95
RecoOnln 4 13 8 1.92

We implemented RecoOnopt and RecoOnln, and re-implemented AKTiveRank to the best of our
abilities. A list of relevant results for all three models is produced for multi-term queries over the CBR-
Bench dataset to compare the effectiveness of RecoOn in a user study. We conducted the user study with
sixteen human experts from the ANU, Monash University, the University of Queensland, CSIRO, Fraun-
hofer Institute, Vienna University of Business, KIT, Universidad de Chile, the Australian Bureau of Statis-
tics and the Polytechnical University of Madrid. All of the evaluators have developed ontologies before
and some are authors of widely cited ontologies.
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Fig. 5. Effectiveness of RecoOnopt vs. AKTiveRank for multi-term query strings
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Fig. 6. Effectiveness of RecoOnopt vs. RecoOnln for multi-term query strings

For the user study, an evaluation tool7 was developed that allowed the experts to evaluate RecoOnopt
for the thirty multi-term query strings in comparison to theAKTiveRank andRecoOnln produced result
sets. Two lists of matched ontologies for a given query string are presented to the evaluators, and they
are requested to choose the list, from the two, that is more relevant to the query string. To make our
evaluation robust and neutral, the following decisions were taken: (1) The order of the queries along with
their relevant results shown to the evaluators was chosen randomly. Every participant was shown queries
in a random order to eliminate the effect of the query sequence on the performance of the approaches. (2)
For each query two lists ‘List A’ and ’List B’, each consisting of the ten most relevant ontologies along
with the matched concepts in the ontology, were shown to the participants. For each query RecoOnopt
was compared with one of the other two algorithms; either AKTiveRank or RecoOnln as baseline.
The selection of the baseline was random. (3) The positioning of the ranked lists as ‘List A’ or ‘List
B’ was random too, i.e. results of RecoOnopt appeared either as ‘List A’ or ‘List B’. Table 4 shows
the statistics about the evaluation strategy. The Table shows minimum, maximum, average, and standard
deviation of the number of times the results of RecoOnopt for a query was evaluated in comparison to
the AKTiveRank or RecoOnln results. The statistics shows a balance in the evaluation as on average 8
evaluations for each query were received for RecoOnopt in comparison to both baselines.

5.2.2. Results
To derive our results, we considered a positive vote forRecoOnopt (resp.RecoOnln orAKTiveRank)

when the list comprised of results of RecoOnopt (resp. RecoOnln or AKTiveRank) was selected by
the expert as the “more relevant” result set for a given query. Fig. 5 and Fig. 6 show all 16 votes for all
thirty queries; the x-axis shows all 30 queries while the y-axis shows the number of votes (evaluations)
in favour of each approach in comparison to the one other approach. RecoOnopt (resp. AKTiveRank)
bars in Fig. 5 show the number of votes for OptimizedRecoOn (resp. AKTiveRank) in comparison to
AKTiveRank (resp.OptimizedRecoOn). Similarly, the results forRecoOnopt andRecoOnln in Fig. 6

7http://activeraul.org/ontologySearch/
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Fig. 7. RecoOnopt performance

show the number of votes for OptimizedRecoOn in comparison to AKTiveRank. Fig. 5 shows that
RecoOnopt incurred more positive votes in comparison to the baseline AKTiveRank, i.e. 94% of the
time experts voted for the result set produced by RecoOnopt to be “more relavant” than AktiveRank
for the example queries. Moreover, 92% of the time RecoOnopt generated “more relevant” result-sets in
comparison to RecoOnln as shown in Fig 6.

Fig. 7a shows the effect of the query size on the effectiveness ofRecoOnopt. The percentage of positive
votes, in comparison to the baselines, for 2, 3, and 4 terms queries are shown here. The figure confirms
that an increase in the number of the query terms increased the effectiveness of RecoOnopt in comparison
to the baselines. The average of positive votes increased from 90% to 98% (resp. 92% to 98%) and the
standard deviation decreased from 11.9% to 4.9% (resp. 11.2% to 4.9%) in comparison to AKTiveRank
(resp. RecoOnln).

In another analysis we examined the effect of the number of evaluations for a query on the performance
ofRecoOnopt. Fig. 7b, shows the statistics, the x-axis shows the number of evaluations (votes) for a query
and y-axis shows the performance of RecoOnopt in comparison to both baselines. The results presented
here show that an increase in the number of evaluations corresponding to a query result in a stable and
improved performance of RecoOnopt.

5.3. Experiments

Table 5
MAP and NDCG for Single term queries

Queries
Metric Approach Person Name Event Title Loc. Addr. Music Org. Author Time

MAP@10 RecoOnopt 0.87 0.69 0.74 0.62 0.53 0.72 0.64 0.88 0.65 0.41
RecoOnln 0.61 0.33 0.45 0.31 0.42 0.55 0.39 0.61 0.41 0.46
AKTiveRank 0.47 0.16 0.25 0.34 0.34 0.48 0.42 0.32 0.54 0.23

NDCG@10 RecoOnopt 0.66 0.51 0.49 0.37 0.32 0.54 0.42 0.54 0.43 0.28
RecoOnln 0.43 0.21 0.29 0.33 0.27 0.38 0.33 0.39 0.25 0.19
AKTiveRank 0.32 0.11 0.14 0.20 0.16 0.23 0.33 0.18 0.29 0.09

Other than the user study, we also compared our approach to the gold standard available as part of the
CBRBench benchmark. As mentioned in Sec. 5.1 we consider the rank of a resource in CBRBench, for
a given query, as the rank for the ontology this resource belongs to. If more than one matched resources
for a query term belong to the same ontology, the highest rank of a matched resource that belongs to the
same ontology is assigned as the rank of the ontology for a given query term. We then measure the Mean
Average Precision @ 10 (MAP@10) and Normalized Discounted Cumulative Gain @ 10 (NDCG@10)
for all ten single term queries based on the gold standard derived from the CBRBench gold standard.

Table 5 shows the MAP@10 and NDCG@10 ofRecoOnopt,RecoOnln andAKTiveRank on ten sin-
gle term queries. The results shows that RecoOnopt performs better than RecoOnln and AKTiveRank.
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Moreover, RecoOnln outperforms AKTiveRank on all ten sample queries. The average MAP@10 is
0.68 and NDCG@10 is 0.46 for RecoOnopt in comparison to the baselines where average MAP@10 is
0.45 and NDCG is 0.31 for RecoOnln and for AKTiveRank, MAP@10 is 0.36 and NDCG is 0.21 .

5.4. Scalability Analysis

In the final experiment, we demonstrate the scalability of our approach and runtime improvements of
RecoOnopt over RecoOnln. RecoOnopt employs a greedy algorithm solution, that tries to minimize the
matching cost, to quickly find high-quality matches. We choose k = 10, and use the same queries as in
the previous experiments (both single term and multi-term queries). The analysis are conducted on four
ontology corpora with differing sizes in terms of the number of ontologies it contains (i.e. 10N, 100N,
1000N and 10000N).

The following experiments are based on varying sized corpora that are randomly sampled from the
CBRBench. Since CBRBench contains 1011 ontologies, to generate 10000N corpus we randomly picked
an ontology removed one or more of it concepts or relations and added it into 10000N corpus with a
different ontology’s URI. The process is repeated until ontology count reaches to 10000N. The ontologies
in CBRBench varies in terms of the number of triples they contain. Therefore, a random selection of
ontologies for all four corpora has high chances of measurement bias. In order to minimize the bias, we
randomly generated 10 samples of each corpus size and recorded the query runtime for all 40 queries on
each sample. An average of 40 queries on 10 samples is recorded as query execution time for one ontology
corpus.

Table 6
Comparison statistics of RecoOnopt with baselines

Ontologies Count Minimum Triples Maximum Triples Average Triples SDev
10 2357 103548 38782.5 41504.4

100 215934 765842 467776.1 174549.5
1000 3021562 8453289 5798053.9 1604409

10000 35381037 68672132 53217881.8 10667258.4

Table 6 shows the maximum, minimum and average number of triples for the samples of all 10N, 100N,
1000N and 100000N corpora. The statistics show that samples for each size of ontology corpus vary in the
number of triples. A measurement on a single sample may not be the true reflection of the performance.
Therefore, for all experiments reported in this section, we consider an average of ten samples for an
ontology corpus.
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Fig. 8. Query match and recommendation time for different length queries

We recorded the query execution time for all single-term and multi-terms queries. The experiments are
divided into those that measure the query match time i.e., the time it takes to find matched ontologies
(as discusses in Sec. 4.1), and those that measure the top-k recommendation time i.e. time it takes to
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recommend up to ‘k’ high quality matches for a query. The former are referred to as ‘Query match time’
experiments and the latter as ‘Recommendation time’ experiments. The reasons for this is twofold: 1) query
match time is dependent on the underlying RDF store (Virtuoso repository in our implementation), while
for 2) for both RecoOnopt and RecoOnlnthe query match time is the same, but the time to recommend k
ontologies differs, due to the different implementations of the recommendation model.

The query match time here also contains the connection time with a local Virtuoso repository, which
is the same for each query on all different sized ontology corpora. Fig. 8a shows the query match time in
seconds with varying query size and varying corpus size. The figure shows an increase in the query match
time with an increase in the number of ontologies (resp. triples) and query size (i.e., number of terms in
a keyword query). The increase in the query match time is logarithmic with the increase in the number of
ontologies/triples in RecoOn. However, the experiment was performed on a desktop machine that can be
easily distributed to perform faster for a reasonable size of ontologies.

Similarly, Fig. 8b show the ontology recommendation time in seconds with varying query size, and
varying corpus size, forRecoOnopt andRecoOnln. The results show thatRecoOnopt performs better than
RecoOnln. The reason for an improved performance is that we implemented a greedy algorithm for the
knapsack optimization that measures the matching cost for all the matched ontologies, while recording the
popularity and informativeness only until the top-k ontologies are retrieved. Although,RecoOnopt is more
efficient in our experiments, the runtime for RecoOn can further be reduced by employing a multi-thread
implementation.

5.5. Results Summary

From the statistics presented in Sec. 5.2 and Sec. 5.3, it is evident that RecoOnopt outperforms the
state-of-the-art ontology ranking algorithm AKTiveRank on the sample queries for the CBRBench on-
tology collection; while an optimized solution to recommend relevant ontologies is preferred over a linear
model of RecoOn in most cases. On average RecoOnopt received 94% positive votes as compared to
AKTiveRank and 92% positive votes as compared to RecoOnln of relevant ontologies for the multi-
term queries in the user study. The results also show that the effectiveness of RecoOnopt increases with
an increase in the length of the query string (i.e., number of query terms); and an increase in the number
of votes for a query result set increases the average of positive votes for RecoOnopt which means that the
lowest positive votes RecoOnopt received for a query (i.e. 67%) could have improved with more evalua-
tions for this query. However, in this user study, for multi-term queries the relevance and the order were
evaluated at once by performing a comparative study of two lists. As future work, we aim to test them
separately to improve the ranking independently of the relevance of an ontology.

Similarly, for a single term query stringsRecoOnopt scored higher for MAP@10 (i.e. 0.68) as compared
to AKTiveRank (i.e. 0.36) and higher for NDCG@10 (i.e. 0.46) as compared to the AKTiveRank (i.e.
0.21). These statistic shows that even for the evaluation of the order of a ranking list, RecoOnln yields
better scores as compared to AKTiveRank. Further experiments were conducted to evaluate the design
decisions made for the proposed recommendation model (i.e. RecoOn). The results presented in Sec. 5.4
show that RecoOnopt performs better than RecoOnln in terms of total query execution time because of
the greedy implementation of the knapsack optimization.

6. Conclusion and Future Work

In this paper we have presented RecoOn, an ontology recommendation approach to select and rank
relevant ontologies against a multi-term structureless query. Our approach first finds a set of matched
ontologies for a query string and then identifies the up to k most relevant matches using three measures,
the Matching cost, the Informativeness and the Popularity of the matched ontologies. Then we integrate
these measures by formulating and solving a linear model (i.e. RecoOnln) and then as an optimization
problem (i.e. RecoOnopt). The evaluation of our approach against AKTiveRank and a linear version of
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our algorithm RecoOnln in a user study performed on the CBRBench dataset (Butt et al., 2014a) shows
that RecoOnopt outperforms the baseline algorithm AktiveRank in 94% of the cases and RecoOnln in
92% of the cases. Moreover, our experiments also show that RecoOnopt is efficient in terms of query
execution time on the CBRBench ontology collection for the sample queries. Although our algorithm
shows significantly improved effectiveness compared to the state-of-the-art in ontology ranking models,
we believe further improvements are possible. In this work we mainly focus on the ranking model. In
future work we want to extend RecoOn in different ways. The query graph generation can be improved
to enhance the matching quality. In the current implementation, user queries are mapped to the ontology
concepts in the form of query graphs. We want to dynamically map structureless queries to structured
graph queries, where a term in a query can be mapped to a concept (node) or to a relationship (edge) of the
ontology graph through a query graph. Secondly, we want to introduce a faceted search over the ontology
corpus that will help a user explore the result sets effectively and efficiently. We also plan to implement
an efficient algorithm to determine the ‘intended type’ of a concept (Butt et al., 2014b) to improve the
matching quality of a resource to the user query.
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